Source code for gepard.qcd

r"""Perturbative QCD functions.

Coefficients of beta function of QCD up to order :math:`\alpha_s^5` (NNNLO),
normalized by

.. math::

     \frac{d a_s}{d \ln \mu_r^2}  =   \beta_0 a_s^2 + \beta_1 a_s^3 + \cdots

with

.. math::

    a_s = \frac{\alpha_{s}}{4\pi}.

Beyond NLO the QCD colour factors are hard-wired in this routine,
and the numerical coefficients are truncated to six digits.

QCD coupling alpha strong is obtained by integrating the evolution
equation for a fixed number of massless flavours  NF.  Except at
leading order (LO), result is obtained using a fourth-order
Runge-Kutta integration.
"""

from math import log

from . import constants


[docs] def beta(p: int, nf: int) -> float: """QCD beta function coefficient. Args: p (int): pQCD order, 0=LO, 1=NLO, 2=NNLO nf (int): number of active quark flavors Returns: float: QCD beta function coefficient Examples: >>> beta(0, 3) -9.0 """ B00 = 11./3. * constants.CA B01 = -4./3. * constants.TF B10 = 34./3. * constants.CA**2 B11 = -20./3. * constants.CA*constants.TF - 4. * constants.CF*constants.TF if p == 0: beta = - B00 - B01 * nf elif p == 1: beta = - B10 - B11 * nf elif p == 2: beta = - 1428.50 + 279.611 * nf - 6.01852 * nf**2 elif p == 3: beta = - 29243.0 + 6946.30 * nf - 405.089 * nf**2 - 1.49931 * nf**3 else: raise ValueError('NNNNLO not yet implemented :-)') return beta
[docs] def _fbeta1(a: float, nf: int) -> float: return a**2 * (beta(0, nf) + a * beta(1, nf))
[docs] def as2pf(p: int, nf: int, r2: float, as0: float, r20: float) -> float: """QCD beta function coefficient. Args: p: pQCD order, 0=LO, 1=NLO, 2=NNLO nf: number of active quark flavors r2: final momentum scale squared as0: initial value for a_strong/(2 Pi) r20: initial momentum scale squared Returns: float: final value for a_strong/(2 Pi) Examples: >>> as2pf(0, 3, 8., 0.3, 4.) 0.15497879500975464 """ # a below is as defined in 1/4pi expansion and is returned to # 1/2pi expansion convention just before return NASTPS = 20 a = 0.5 * as0 lrrat = log(r2/r20) dlr = lrrat / NASTPS if p == 0: a = 0.5 * as0 / (1. - 0.5 * beta(0, nf) * as0 * lrrat) elif p == 1: for k in range(1, NASTPS+1): xk0 = dlr * _fbeta1(a, nf) xk1 = dlr * _fbeta1(a + 0.5 * xk0, nf) xk2 = dlr * _fbeta1(a + 0.5 * xk1, nf) xk3 = dlr * _fbeta1(a + xk2, nf) a = a + (xk0 + 2 * xk1 + 2 * xk2 + xk3) / 6 else: raise ValueError('Only LO and NLO implemented!') # Return to .../(2pi) expansion a = 2 * a return a