"""Quadrature formulas, abscissas and weights.
Also numerical derivative routine.
"""
from typing import Tuple
import numpy as np
from scipy.special import p_roots
roots4, weights4 = p_roots(4) # roots and weigths for 4-th order quadrature
roots5, weights5 = p_roots(5)
roots10, weights10 = p_roots(10)
roots18, weights18 = p_roots(18)
roots35, weights35 = p_roots(35)
roots81, weights81 = p_roots(81)
[docs]
def mellin_barnes(c, phi, accuracy: int = 3, extended: bool = False) -> Tuple[np.ndarray, np.ndarray]:
"""Construct basic MB array.
Args:
c: point of crossing the real axis
phi: angle with the real axis
accuracy: 2*accuracy points per interval
Returns:
(complex coordinates of MB contour, integration weighths)
"""
# c = 0.35
phij = phi*1j
roots, weights = p_roots(2**accuracy)
if extended:
division = np.array([0., 0.01, 0.08, 0.15, 0.3, 0.5, 1.0,
1.5, 2.0, 4.0, 6.0, 8.0, 10.0,
20, 50, 200, 1000])
else:
division = np.array([0., 0.01, 0.08, 0.15, 0.3, 0.5, 1.0,
1.5, 2.0, 4.0, 6.0, 8.0, 10.0])
summ = division[1:] + division[:-1]
diff = division[1:] - division[:-1]
x = []
wg = []
dv = 0
for dv in range(len(division)-1):
x.append((diff[dv]*roots + summ[dv])/2)
wg.append(diff[dv]*weights/2)
x_array = np.array(x).flatten()
wg_array = np.array(wg).flatten()
n_array = c + 1 + x_array * np.exp(phij)
return n_array, wg_array
[docs]
def nd_mellin_barnes(accuracy: int = 3) -> Tuple[np.ndarray, np.ndarray]:
"""Construct MB array for non-diagonal evolution operator.
Args:
accuracy: 2*accuracy points per interval
Returns:
(complex coordinates of MB contour, integration weighths)
Note:
Code should be merged with standard mellin_barnes.
"""
cnd = -0.25
phij = 1.57079632j
roots, weights = p_roots(2**accuracy)
division = np.array([0., 0.01, 0.025, 0.067, 0.18, 0.5, 1.3,
3.7, 10, 25, 67, 180, 500])
summ = division[1:] + division[:-1]
diff = division[1:] - division[:-1]
x = []
wg = []
dv = 0
for dv in range(len(division)-1):
x.append((diff[dv]*roots + summ[dv])/2)
wg.append(diff[dv]*weights/2)
x_array = np.array(x).flatten()
wg_array = np.array(wg).flatten()
znd_array = cnd + x_array * np.exp(phij)
return znd_array, wg_array
[docs]
def quadSciPy81(func, a, b, args=()):
"""Compute a definite integral using 81-order Gaussian quadrature."""
y = (b-a)*(roots81+1)/2.0 + a
return (b-a)/2.0*np.sum(weights81*func(y, *args), 0)
[docs]
def quadSciPy35(func, a, b, args=()):
"""Compute a definite integral using 35-order Gaussian quadrature."""
y = (b-a)*(roots35+1)/2.0 + a
return (b-a)/2.0*np.sum(weights35*func(y, *args), 0)
[docs]
def quadSciPy18transposed(func, a, b, args=()):
"""Compute a definite integral using 18-order Gaussian quadrature."""
y = (b-a)*(roots18+1)/2.0 + a
return (b-a)/2.0*np.sum((weights18*func(y, *args)).transpose(), 0)
[docs]
def quadSciPy10(func, a, b, args=()):
"""Compute a definite integral using tenth-order Gaussian quadrature."""
y = (b-a)*(roots10+1)/2.0 + a
return (b-a)/2.0*np.sum(weights10*func(y, *args), 0)
[docs]
def quadSciPy10transposed(func, a, b, args=()):
"""Compute a definite integral using fifth-order Gaussian quadrature."""
y = (b-a)*(roots10+1)/2.0 + a
return (b-a)/2.0*np.sum((weights10*func(y, *args)).transpose(), 0)
[docs]
def quad10(func, a, b, args=()):
"""Compute a definite integral using tenth-order Gaussian quadrature."""
# Slower, but doesn't require ndarray from our code.
int = 0.0
for i in range(len(roots10)):
y = (b-a)*(roots10[i]+1)/2.0 + a
int = int + (b-a)/2.0*(weights10[i]*func(y, *args))
return int
[docs]
def quadSciPy5(func, a, b, args=()):
"""Compute a definite integral using fifth-order Gaussian quadrature."""
y = (b-a)*(roots5+1)/2.0 + a
return (b-a)/2.0*sum(weights5*func(y, *args), 0)
[docs]
def quadSciPy5transposed(func, a, b, args=()):
"""Compute a definite integral using fifth-order Gaussian quadrature."""
y = (b-a)*(roots5+1)/2.0 + a
return (b-a)/2.0*sum((weights5*func(y, *args)).transpose(), 0)
[docs]
def quadSciPy4(func, a, b, args=()):
"""Compute a definite integral using fifth-order Gaussian quadrature."""
y = (b-a)*(roots4+1)/2.0 + a
return (b-a)/2.0*sum(weights4*func(y, *args), 0)
# Choice of routine used for P.V. integration
PVquadrature = quadSciPy18transposed
# Choice of routine used for harmonic projection
Hquadrature = quadSciPy10transposed
# Choice of routine used for t-integration
tquadrature = quadSciPy5
# Choice of routine used for t->b Fourier transform
bquadrature = quadSciPy10
# Choice of routine used for <r(theta)> integrals
rthtquadrature = quadSciPy10
[docs]
def deriv(func, x, h, nevals):
"""Return derivative func'(x) using Ridders-Neville algorithm."""
# Adapted from Press et al., Numerical Recipes
# in a blind, non-pythonic way
con = 1.4 # scale decrease per step
safe = 2 # return when error is safe worse than the best so far
big = 1.e3
hh = h
a = np.zeros((nevals+1, nevals+1))
a[1, 1] = (func(x+hh) - func(x-hh))/(2*hh)
err = big
for i in range(2, nevals+1):
hh = hh / con
a[1, i] = (func(x+hh) - func(x-hh))/(2*hh)
fac = con**2
for j in range(2, i+1):
a[j, i] = (a[j-1, i]*fac - a[j-1, i-1])/(fac-1)
fac = con**2 * fac
errt = max(abs(a[j, i]-a[j-1, i]),
abs(a[j, i]-a[j-1, i-1]))
if (errt <= err):
err = errt
drv = a[j, i]
if abs(a[i, i]-a[i-1, i-1]) >= safe*err:
return drv, err