Source code for gepard.quadrature

"""Quadrature formulas, abscissas and weights.

Also numerical derivative routine.
"""

from typing import Tuple

import numpy as np
from scipy.special import p_roots

roots4, weights4 = p_roots(4)  # roots and weigths for 4-th order quadrature

roots5, weights5 = p_roots(5)

roots10, weights10 = p_roots(10)

roots18, weights18 = p_roots(18)

roots35, weights35 = p_roots(35)

roots81, weights81 = p_roots(81)


[docs] def mellin_barnes(c, phi, accuracy: int = 3, extended: bool = False) -> Tuple[np.ndarray, np.ndarray]: """Construct basic MB array. Args: c: point of crossing the real axis phi: angle with the real axis accuracy: 2*accuracy points per interval Returns: (complex coordinates of MB contour, integration weighths) """ # c = 0.35 phij = phi*1j roots, weights = p_roots(2**accuracy) if extended: division = np.array([0., 0.01, 0.08, 0.15, 0.3, 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, 10.0, 20, 50, 200, 1000]) else: division = np.array([0., 0.01, 0.08, 0.15, 0.3, 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, 10.0]) summ = division[1:] + division[:-1] diff = division[1:] - division[:-1] x = [] wg = [] dv = 0 for dv in range(len(division)-1): x.append((diff[dv]*roots + summ[dv])/2) wg.append(diff[dv]*weights/2) x_array = np.array(x).flatten() wg_array = np.array(wg).flatten() n_array = c + 1 + x_array * np.exp(phij) return n_array, wg_array
[docs] def nd_mellin_barnes(accuracy: int = 3) -> Tuple[np.ndarray, np.ndarray]: """Construct MB array for non-diagonal evolution operator. Args: accuracy: 2*accuracy points per interval Returns: (complex coordinates of MB contour, integration weighths) Note: Code should be merged with standard mellin_barnes. """ cnd = -0.25 phij = 1.57079632j roots, weights = p_roots(2**accuracy) division = np.array([0., 0.01, 0.025, 0.067, 0.18, 0.5, 1.3, 3.7, 10, 25, 67, 180, 500]) summ = division[1:] + division[:-1] diff = division[1:] - division[:-1] x = [] wg = [] dv = 0 for dv in range(len(division)-1): x.append((diff[dv]*roots + summ[dv])/2) wg.append(diff[dv]*weights/2) x_array = np.array(x).flatten() wg_array = np.array(wg).flatten() znd_array = cnd + x_array * np.exp(phij) return znd_array, wg_array
[docs] def quadSciPy81(func, a, b, args=()): """Compute a definite integral using 81-order Gaussian quadrature.""" y = (b-a)*(roots81+1)/2.0 + a return (b-a)/2.0*np.sum(weights81*func(y, *args), 0)
[docs] def quadSciPy35(func, a, b, args=()): """Compute a definite integral using 35-order Gaussian quadrature.""" y = (b-a)*(roots35+1)/2.0 + a return (b-a)/2.0*np.sum(weights35*func(y, *args), 0)
[docs] def quadSciPy18transposed(func, a, b, args=()): """Compute a definite integral using 18-order Gaussian quadrature.""" y = (b-a)*(roots18+1)/2.0 + a return (b-a)/2.0*np.sum((weights18*func(y, *args)).transpose(), 0)
[docs] def quadSciPy10(func, a, b, args=()): """Compute a definite integral using tenth-order Gaussian quadrature.""" y = (b-a)*(roots10+1)/2.0 + a return (b-a)/2.0*np.sum(weights10*func(y, *args), 0)
[docs] def quadSciPy10transposed(func, a, b, args=()): """Compute a definite integral using fifth-order Gaussian quadrature.""" y = (b-a)*(roots10+1)/2.0 + a return (b-a)/2.0*np.sum((weights10*func(y, *args)).transpose(), 0)
[docs] def quad10(func, a, b, args=()): """Compute a definite integral using tenth-order Gaussian quadrature.""" # Slower, but doesn't require ndarray from our code. int = 0.0 for i in range(len(roots10)): y = (b-a)*(roots10[i]+1)/2.0 + a int = int + (b-a)/2.0*(weights10[i]*func(y, *args)) return int
[docs] def quadSciPy5(func, a, b, args=()): """Compute a definite integral using fifth-order Gaussian quadrature.""" y = (b-a)*(roots5+1)/2.0 + a return (b-a)/2.0*sum(weights5*func(y, *args), 0)
[docs] def quadSciPy5transposed(func, a, b, args=()): """Compute a definite integral using fifth-order Gaussian quadrature.""" y = (b-a)*(roots5+1)/2.0 + a return (b-a)/2.0*sum((weights5*func(y, *args)).transpose(), 0)
[docs] def quadSciPy4(func, a, b, args=()): """Compute a definite integral using fifth-order Gaussian quadrature.""" y = (b-a)*(roots4+1)/2.0 + a return (b-a)/2.0*sum(weights4*func(y, *args), 0)
# Choice of routine used for P.V. integration PVquadrature = quadSciPy18transposed # Choice of routine used for harmonic projection Hquadrature = quadSciPy10transposed # Choice of routine used for t-integration tquadrature = quadSciPy5 # Choice of routine used for t->b Fourier transform bquadrature = quadSciPy10 # Choice of routine used for <r(theta)> integrals rthtquadrature = quadSciPy10
[docs] def deriv(func, x, h, nevals): """Return derivative func'(x) using Ridders-Neville algorithm.""" # Adapted from Press et al., Numerical Recipes # in a blind, non-pythonic way con = 1.4 # scale decrease per step safe = 2 # return when error is safe worse than the best so far big = 1.e3 hh = h a = np.zeros((nevals+1, nevals+1)) a[1, 1] = (func(x+hh) - func(x-hh))/(2*hh) err = big for i in range(2, nevals+1): hh = hh / con a[1, i] = (func(x+hh) - func(x-hh))/(2*hh) fac = con**2 for j in range(2, i+1): a[j, i] = (a[j-1, i]*fac - a[j-1, i-1])/(fac-1) fac = con**2 * fac errt = max(abs(a[j, i]-a[j-1, i]), abs(a[j, i]-a[j-1, i-1])) if (errt <= err): err = errt drv = a[j, i] if abs(a[i, i]-a[i-1, i-1]) >= safe*err: return drv, err